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Computer vision for pattern detection
in chromosome contact maps
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Chromosomes of all species studied so far display a variety of higher-order organisational

features, such as self-interacting domains or loops. These structures, which are often

associated to biological functions, form distinct, visible patterns on genome-wide contact

maps generated by chromosome conformation capture approaches such as Hi-C. Here we

present Chromosight, an algorithm inspired from computer vision that can detect patterns in

contact maps. Chromosight has greater sensitivity than existing methods on synthetic

simulated data, while being faster and applicable to any type of genomes, including bacteria,

viruses, yeasts and mammals. Our method does not require any prior training dataset and

works well with default parameters on data generated with various protocols.
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Proximity ligation derivatives of the chromosome con-
formation capture (3C) technique1 such as Hi–C2 or ChIA-
PET3 determine the average contact frequencies between

DNA segments within a genome, computed over hundreds of
thousands of cells.These approaches have unveiled a wide variety
of chromatin 3D structures in a broad range of organisms. For
instance, in all species studied so far, sub-division of chromo-
somes into self-interacting domains associated with various
functions have been observed4,5 (Fig. 1a). In addition, chromatin
loops bridging distant loci within a chromosome (from a few kb
to a Mb) are also commonly detected by Hi–C, such as during
mammalian interphase6 or yeast mitotic metaphase7–9. Other
spatial structures are more peculiar, and sometimes specific to
some organisms. For instance, the contact maps of most bacteria
display a secondary diagonal perpendicular to the main one10–12,
reflecting the bridging of chromosome replichores (i.e. arms) by
the structural maintenance of chromosome complex (SMC)
condensin10, a ring-shaped molecular motor able to entrap and
travel along DNA molecules13. Smaller straight, or loosely bent,
secondary diagonals, also perpendicular to the main diagonal, can
also be observed in some maps, reflecting potentially long DNA
hairpins or dynamic sliding asymmetrical contacts (Fig. 1a). Such
“hairpin-like” configuration is for instance observed near the
origin of replication of the Bacillus subtilis genome, were it was
originally described as a “bow shaped” structure10. The formation
of these different structures can vary depending on the stage of
the cell cycle,7,10,14, the state of cell differentiation15 or viral

infection16. Different molecular mechanisms have been proposed
to explain the patterns visible on the contact maps, and for a
similar pattern, these mechanisms or their regulation can differ.
Although detailing these mechanisms is beyond the scope of the
present work, one can note that in mammals the CCCTC-binding
factor (CTCF) protein is enriched at loop anchors (i.e. the regions
bridged together). It has been proposed that CTCF acts as a
roadblock to the SMC molecular motor cohesin, which travels
along chromatin. Cohesins promote the formation of chromatin
loops, potentially through a loop extrusion mechanisms in which
two chromatin filaments are extruded through the cohesin
ring17). When cohesin encounters a roadblock along one of the
filament, chromatin displacement stops in this direction. As a
consequence, two roadblocks at two distant loci will stop cohesin
progression along both filaments, resulting in a stabilised loop.
Such stable loops are then visible in bulk genomics techniques
such as Hi–C (for more insights on the putative mechanisms, see
for instance17,18). Other patterns such as the perpendicular
“hairpin” can be explained by alternative scenarios, for instance
where cohesin is continuously loaded at a discrete position along
the chromatin while being unloaded before hitting a roadblock. A
single roadblock combined with continuous cohesin loading in an
adjacent locus could result in a bent, bow-shaped pattern, as
proposed in10,19,20. A large body of work, exploiting genetics and
chromosome engineering approaches, aims at characterising the
regulation and the functional relationships of these 3D features
with DNA processes such as repair, gene expression or
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segregation. Although most structural features can be identified
by eye on the contact maps, automated detection is essential to
quantify and facilitate the biological and physical interpretation of
the data generated through these experiments. While border
detection can be achieved quite efficiently using different methods
(segmentation, break-point detection, etc; ref. 21), the calling of
loops, as well as other more peculiar features such as “hairpin-
like” signals, remains challenging.

Most tools aiming at detecting DNA loops in contact maps rely
on statistical approaches and search for pixel regions enriched in
contact counts, such as Cloops22, HiCCUPS23, HiCExplorer24,
diffHic25, FitHiC226, HOMER27. These programs can be com-
putationally intensive and take several hours of computation for
standard human Hi–C datasets (reviewed in ref. 22), or require
specialised hardware such as GPU (HiCCUPS). In addition, most
if not all of them were developed from, and for, human data. As a
consequence, they suffer from a lack of sensitivity and fail to
detect biologically relevant structures not only in non-model
organisms but also in popular species with compact genomes
such as budding yeast (Saccharomyces cerevisiae) or bacteria
where the scales of the structures are considerably smaller than in
mammalian genomes. Here we present Chromosight, an algo-
rithm that, when applied on mammalian, bacterial, viral and yeast
genome-wide contact maps, quickly and efficiently detects and/or
quantifies any type of pattern, with a specific focus on chromo-
somal loops. Different species were chosen to reflect the diversity
of genome-wide contact maps observed in living organisms. For
instance, loop contact patterns have been observed in these four
clades, but with very different scales and visibility. In human
(genome size: ~3 Gb), interphase chromosomes display loops
bridging chromatin loci separated by ~20 kb to 20Mb. The
structures are reflected by well-defined, discrete dots in the
contact maps, away from the main diagonal. In contrast, the
mitotic chromosomes of S. cerevisiae and fission yeast Schizo-
saccharomyces pombe (genome sizes: ~12Mb) organise into
arrays of loops spanning ~5–50 kb, i.e. much smaller than the
loops observed along mammalian interphase chromosomes7–9.
Because of their proximity to the main diagonal in standard Hi–C
experiments, the signal generated by those loops is more difficult
to call. Loops have been observed in bacteria as well. For instance,
in B. subtilis (genome size: 4.1 Mb), a few weak, discrete loop
signals were observed but never directly quantified10. In addition
to loops, self-interacting domains have also been described in
these different species, that differ in size and nature. For instance,
topologically associating domains4,28 have a mean size of 1 Mb
(from 200 kb to 6Mb) in human and mice, compared to the
small, chromosome interacting domains (CID) of bacteria that
range in size between a few dozens to a couple hundreds
kb10,29,30. Besides this limitation, most programs are limited to
domain or loop calling and remain unable to call de novo dif-
ferent contact patterns such as DNA hairpins or the asymmetric
patterns seen in species such as B. subtilis10.

Results
Presentation and benchmark of Chromosight. Chromosight
takes a single, whole-genome contact map in sparse and com-
pressed format as an input. It applies a balancing normalization
procedure31 to attenuate experimental biases. A detrending pro-
cedure, to remove distance-dependent contact decay due to
polymeric behaviour, is then applied, which consists in dividing
each pixel by its expected value under the polymer behaviour
(Fig. 1b). A template (kernel) representing a 3D structure of
interest (e.g. a loop, a boundary,...) is fed to the program and
sought for in the image of the contact map through two steps
(Fig. 1b). First, the map is subdivided into sub-images correlated

to the template; then, the sub-images with the highest correlation
values are labelled as template representations (i.e. potential
matches, see Methods). Correlation coefficients are computed
by convolving the template over the contact map. To reduce
computation time, the template can be approximated using
truncated singular value decomposition (tSVD) (Supplementary
Note 132). To identify the regions with high correlation values
(i.e. correlation foci), Chromosight uses Connected Component
Labelling (CCL). Finally, the maximum within each correlation
focus is extracted and its coordinates in the contact map
determined.

We decided to benchmark Chromosight against 4 existing
programs by running them in loop-calling mode on synthetic
Hi–C data mimicking mitotic chromosomes of S. cerevisiae
(“Methods” and Supplementary Fig. 1). Whereas Chromosight
displays a precision (i.e. proportion of true positives among
detected patterns) comparable to the other programs, its
sensitivity (i.e. proportion of relevant patterns detected) is more
than threefold higher (~70%) compared to the second-best
program Hicexplorer (~20%) (Fig. 1c). As a result, Chromosight’s
F1 score, a metric that considers both precision and sensitivity, is
also threefold higher, reflecting the effectiveness of the program at
detecting more significant loops in this synthetic case study
(Supplementary Fig. 2a). To further benchmark the program’s
performance, we ran the three best CPU-based programs
(Cooltools, Hicexplorer, Chromosight) on high resolution (10
kb), human genome-wide experimental contact maps. Chromo-
sight outperforms existing methods regarding computing time
(Fig. 1d), without straining RAM (Fig. 1e). For instance, on a
single CPU core, it detects loops at maximum distance of 5 Mb
within ~5min compared to ~17 and 30 min for Cooltools and
Hicexplorer, respectively.

To get a sense of the differences between the softwares when
applied to experimental human contact maps, we compared them
with default parameters on Hi–C data generated from GM12878
cell lines33. Compared to Chromosight, we first noticed that other
programs missed multiple loops which were clearly visible on the
maps (e.g. Supplementary Fig. 3a). For instance, Chromosight
found 85% of the loops detected by Cooltools, the software with
the highest precision in our benchmark, while overall identifying
a much larger number of loops (37,955 vs. 6264, respectively)
(Supplementary Fig. 3c). We then measured the proportion of
loops with both anchors overlapping CTCF peaks identified from
ChIP-seq34. Almost all (~95%) loops detected by Hiccups and
Cooltools, the most conservative programs, co-localize with
CTCF enriched sites, compared to ~64% for the loops detected
by Chromosight and Hicexplorer (Supplementary Fig. 3b).
Chromosight (and Hicexplorer) indeed detects multiple weaker
loops, visible on the maps and arranged in grid-like patterns, but
often with only one anchor falling into a well-defined CTCF
enriched site. Some of these weaker loops’ anchors may be less
enriched in CTCF, which would cause ChIP-seq peak calling
algorithms to discard them because of parameters such as
intensity thresholds, or minimum inter-peak distances. This
means that more sensitive loop callers could result in lower CTCF
peak overlap, not because of inaccurate detection, but rather
because of the CTCF peaks cutoffs. On the other hand, less
sensitive loop callers would call the strongest loops associated
with the strongest CTCF peaks. We can also not exclude that a
portion of the less intense loops called by Chromosight are linked
to different protein complexes or mechanisms. More investiga-
tions will further dissect the nature of these loops.

Detection and quantification of loops in a compact genome.
Hi–C contact maps of budding and fission yeast chromosomes
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generated from synchronised cells during meiosis35 and mitosis7–9

display arrays of chromatin loops. Recent work further showed
that S. cerevisiae mitotic loops are mediated and regulated by the
SMC complex cohesin7,8. Chromosight loop calling on data from
ref. 8 identified 974 loops along S. cerevisiae mitotic chromosomes
(Fig. 2a). An enrichment analysis shows that half (50%) of the
anchors of those mitotic loops consist in loci enriched in the
cohesin subunit Scc1 (Fig. 2b), (P < 10−16). The loop signal
spectrum in mitosis shows the most stable loops are ~20 kb long
(Fig. 2c). This size is also found in the S. pombe yeast, which has
longer chromosomes.

On the other hand, loop calling on contact maps generated
from cells in G1, where cohesin does not stably binds to
chromosomes, yielded only 115 loops (Fig. 2d and Supplementary
Fig. 4a). Interestingly, this pool of loops appears different from
the group of loops detected during mitosis suggesting that
cohesin independent processes act on chromosomal loop
formation in yeast (Fig. 2d and Supplementary Fig. 4a). Notably,
loop anchors were enriched in highly expressed genes (HEG)
(Supplementary Fig. 4a).

To validate the biological relevancy of the loops detected by
Chromosight during mitosis, we further analysed their depen-
dency and association to cohesin using the quantification mode
implemented in the program (Methods and Supplementary Fig.
5a). This mode allows to precisely compute the correlation scores
on a set of input coordinates with a generic kernel. We computed

the “loop spectrum” (Loop score versus size) for pairs of cohesin
ChIP-seq peaks separated by increasing genomic distances. A
characteristic size of 20 kb was clearly visible on the spectrum
during mitosis, whereas the spectrum in G1 appeared flat
(Supplementary Fig. 5b). This analysis highlights the role of
cohesin in mediating regular loop structures during mitosis and
shows how Chromosight can be used to precisely quantify spatial
patterns like chromosome loops.

To test the ability of Chromosight to detect loops in a
genetically disturbed context, they were called on contact data of
a mutant depleted for the SMC holocomplex member Pds5 (Pre-
cocious Dissociation of Sisters)7. This protein regulates cohesin
loop formation through two independent pathways7, and its
depletion leads to the formation of loops over longer distances
than in wild-type yeast. One anchor of loops in Pds5 depleted
cells appeared to be the centromeres, as suggested by visual
inspection of the maps7. However, loop patterns are shadowed by
a strong boundary signal appearing at the centromeres, which
makes their visual identification challenging. Loop calling using
Chromosight confirmed this observation, as the anchors of the
loops called were strongly enriched at centromeric regions
(Supplementary Fig. 4b, P < 10−16)). This analysis shows that
Chromosight is able to robustly quantify global reorganisation of
genome architecture.
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Finally, we called domain boundaries (Fig. 1a, border kernel)
on the G1 maps, identifying 473 instances of boundaries mostly
associated with HEG as well (Supplementary Fig. 4b).

Exploration of various genomes and patterns. To further test
the versatility of Chromosight, we called all three kernels
described in Fig. 1a, i.e. loops, borders and hairpins (Supple-
mentary Fig. 6) in Hi–C contact maps of human lymphoblastoids
(GM12878)36 (Fig. 3a).

With default parameters, Chromosight identified 18,839 loops
(compared to ≃10,000 detected in ref. 6) whose anchors fall
mostly (~ 58%, P < 10−16) into loci enriched in cohesin subunit
Rad21 (Fig. 3b). Decreasing the detection threshold (Pearson
coefficient parameter) allows to detect lower intensity but relevant
patterns (Supplementary Fig. 7a). The program also identified
9638 borders, ~75% of which coincide with CTCF binding sites,
compared to ~14% expected (P < 10−16). In human, TADs are
known to be delimited by CTCF-enriched sites, suggesting that
Chromosight does indeed correctly identify boundaries involved
in TADs delimitation. Finally, Chromosight detected 3,782
hairpin-like structures (Fig. 3b), a pattern not systematically
sought for in Hi–C maps. The chromosome coordinates for this
pattern appeared enriched in cohesin loading factor NIPBL (2
fold effect, P < 10−16), suggesting that these hairpin-like struc-
tures could be interpreted as cohesin loading points (Supple-
mentary Fig. 6). To test for a role of cohesin and NIPBL in
generating these patterns, we quantified loops and hairpins on
contact maps generated from cells depleted either in cohesin or
NIPBL. Both conditions were associated with a disappearance of
the detected patterns (Supplementary Fig. 8), further supporting
their formation hypothesis. Finally, we called loops de novo along
the genomes of various animals from the DNA Zoo project37,
showing that stable loops of ≃100–150 kb are a conserved feature
of animal genomes (Supplementary Fig. 9).

The loop detection efficiency was also tested using noisier,
compact genomic contact maps. We applied it on the 3C-seq data
generated from bacterium B. subtilis10. Chromosight identified
109 loops distributed throughout the chromosome (Fig. 3c).
Annotation of loop anchor positions showed a strong enrichment
with the bacteria Smc-ScpAB condensin complexes (Fig. 3c).
Some of these loops were surprisingly large, bridging loci
separated by more than 100 kb (Supplementary Fig. 10) (for a
genome size of 4.1 Mb). Several of these large loops may
correspond to the bridging of replichores at positions symmetric
with respect to the origin of replication (Supplementary Fig. 10).
This is in agreement with10 which showed how SMC condensin
SMC-ScpAB complexes loaded at sites adjacent to the origin of
replication of the chromosome tether the left and right
chromosome arms together while traveling from the origin to
the terminus.

Finally, we used Chromosight to detect loops on contact data
generated using pair-end tag sequencing (ChIA-PET)38, which
captures contacts between DNA segments associated to a
protein of interest. We used ChIA-PET data for CTCF from
human lymphoblastoids38 binned at a very high resolution
(500 bp). Lymphoblastoids are immortalised B lymphocytes,
they contain episomes of the Epstein Barr Virus (EBV), a DNA
virus that is approximately 172 kb in size and is involved in the
development of certain tumours39. Surprisingly, Chromosight
detected several loops (5) inside the genome of the Epstein Barr
virus38. These loops, of a few dozen kb in size, coincide with the
position of the cohesin (Rad21) and CTCF binding sites present
along the viral genome (Fig. 3d). Such interactions have been
suggested from 3C qPCR data40. Automatic detection now
unambiguously supports a specific viral chromosome structure

that could impact the transcriptional regulation and metabo-
lism of the virus40.

Application to different proximity ligation protocols. Besides
Hi–C, Chromosight can be applied on contact data generated
with alternative protocols developed to explore various aspect of
chromosomal organisation (Fig. 4a). We retrieved publicly
available datasets from asynchronous human cells spanning a
range of techniques (i.e. ChIA-PET, DNA SPRITE, HiChIP and
Micro-C) from the 4D Nucleome Data Portal41, and applied
loops detection in the resulting contact maps. In situ ChIA-PET42

quantifies the contact network mediated by a specific protein of
interest thanks to the addition of an immunoprecipitation step.
Chromosight required adjustment of a single parameter to pro-
duce visually satisfying loop calling in in situ ChIA-PET data. We
then performed loop detection on DNA Split-Pool Recognition of
Interactions by Tag Extension (SPRITE) data43. This approach
requires cross-linking and fragmentation of chromatin but does
not use ligation. Instead, it splits the content into 96-well plates
with barcode molecules in each well. The barcode signature
allows clustering of complexes that were originally part of a
higher-order chromatin structure in the nucleus. Chromosight
was able to detect patterns that visually correspond to loops,
although the noise present in this original proof-of-principle
dataset made detection challenging. We then analysed HiChIP
data44, a protocol similar to ChIA-PET but with a better signal-
to-noise ratio, and that requires a lower amount of input DNA.
The results of loop calling on HiChIP matrices were very close to
those from Hi–C (Fig. 4a). Finally, loops were called on the
Micro-C data recently generated from human embryonic stem
cells (hESC)45. Micro-C uses MNase digestion and a dual cross-
link procedure, which allows a contact resolution down to the
nucleosome scale. This approach resulted in the highest number
of loops (~45,000 Fig. 4b); a visual inspection confirmed that
most of them appeared relevant. The number of detected loops in
each protocol is directly dependent on the coverage, but these
analyses show that Chromosight can conveniently be used for the
analysis of data generated through various proximity ligation
protocols with minimal, if any, tuning.

In parallel to the loop calling mode, we also used Chromosight
in its quantify mode to measure the loop signal between pairs of
cohesin peaks as a function of their genomic distance for the
different protocols in asynchronous human cells (Fig. 4c). The
resulting spectra were quite similar, with loop scores peaking
around 120 kb for each protocol. Surprisingly, a secondary peak
was also clearly visible at 250 kb, corresponding to about twice the
fundamental frequency. This peak was clearest with the Micro-C
data. These peaks were absent from dataset generated directly on
mitotic condensed chromosomes (T= 0 from ref. 46), but using
the same ChIP-seq dataset (Supplementary Fig. 8c). The median
distance between cohesin peaks called from ChIP-seq was 468 kb,
suggesting that this parameter didn’t introduce a bias accounting
in the 120 kb. This double peak in the distribution of cohesin
contacts as a function of their genomic distance in interphase cells
remains to be validated independently, and its signification
characterised.

Point and click mode. In addition to the kernels presented here
(loops, borders, hairpins), visual inspection of the contact maps
may inspire scientists to seek for new patterns of interest for
quantitative analysis. We have therefore included a “point and
click” mode that allows easy manual inspection of Hi–C contact
maps to select patterns identified by users. The user clicks on
positions corresponding to patterns of interests. For each posi-
tion, a window will be drawn by the program. A new kernel is
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then automatically generated by summing all windows and
applying a Gaussian filter to attenuate the fluctuations resulting
from the small number of selected positions. This kernel can then
be used in the other modes of Chromosight (detection, quanti-
fication) for further analyses.

We illustrate this functionality to investigate the pattern of
centromere-centromere interactions in yeast. Yeasts contact maps
are scattered with cross-shaped dots corresponding to inter-
chromosomal contacts between peri-centromeric positions. This

cross-shaped pattern is characteristic of the Rabl configuration of
those genomes, where all centromeres are maintained in the
vicinity of each other at the level of the microtubule organising
center47,48. As a result, peri-centromeric regions collide with each
other more frequently than with the rest of the genome, resulting
in a distinct trans pattern. In budding yeast, the 16 centromeres
result in 120 discrete, inter-chromosomal cross-shaped dots. We
selected (by double-clicking) 15 patterns of these S. cerevisiae
centromere contacts. The resulting kernel was then used to
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perform the detection of similar structures in the genome contact
map of another yeast species, Candida albicans, a diploid
opportunistic pathogen which contains 8 pairs of chromosomes
(resolution: 5 kb, ref. 49).

Using the kernel generated de novo from the S. cerevisiae
contact map, Chromosight automatically detected 26 out of the
28 inter-centromeric patterns of C. albicans, along with one false
positive (most likely a genome misassembly, located at the edge of
the map) (Fig. 5). These positions are nevertheless sufficient to
point at centromere positions, and can for instance then be used
to characterise their genomic coordinates47.

Note that, although subtelomeric regions in yeast tend to
cluster in yeast nuclei and therefore display discrete contacts
reminiscent of those of peri-centromeric contacts, Chromosight
was able to discriminate between those two patterns, detecting
specifically inter-centromeric interactions. The program was
therefore able to correctly assess the subtle geometrical differences
between these two patterns. Overall, this analysis shows the ability
of Chromosight to quickly detect any type of user-defined
pattern. We anticipate that many more patterns will be added to
the catalogue of visual patterns linked to different molecular
mechanisms of chromosome architecture.

Discussion
In this work, we present Chromosight, a computer vision pro-
gram to detect 3D structures in chromosome contact maps. We
show that Chromosight outmatches other programs designed to
detect chromosome loops, and that it can be used to extract other
biologically relevant patterns generated through different chro-
mosome capture derivatives.

Chromosight is versatile and we expect that additional pattern
configurations will be added by the community, such as stripes,
bow-shaped patterns, patterns associated to misassemblies or
structural variations (e.g. inversions, translocations...) or any
pattern of interest that the user can propose. The approach could
therefore be used to investigate structural rearrangements in
cancer cells, for instance, although the sensitivity of the program
to detect rearrangements taking place in only a fraction of a
population of cells remains to be tested. Similarly, the potential of
the approach to develop new Hi–C based genome scaffolding
algorithms could also be explored in the future50,51. The program

has a great flexibility that allows to work with diverse biological
data and address different questions, either using the de novo
calling mode or the quantification mode. For instance, the pos-
sibility of varying the size of the loop kernel allows to optimise it
for different conditions: larger kernels are more tolerant to noisy
data (Fig 3c) as they dampen the fluctuations whereas smaller
kernels allow to detect loops very close to the main diagonal
(Supplementary Fig. 7).

A possible extension of the present approach is the addition of
an iterative feedback step to the general flowchart of the current
algorithm. Indeed, the output pileup after the first run of detec-
tion can be reused in another iteration of detection on the same
data. This step could allow a finer adaptation to the data and to
detect patterns a little further away from the initial kernel while
keeping the basic characteristics.

With decreasing sequencing costs, new experimental protocols
and optimised methods for amplifying specific genomic regions,
we expect that the folding of the genomes of many species will be
investigated in the near future using chromosome contact tech-
niques. The algorithmic approach we present here provides a
computational and statistical framework for the discovery of new
principles governing chromosome architecture.

Methods
Simulation of Hi–C matrices. Simulated matrices were generated using a boot-
strap strategy based on Hi–C data from chromosome 5 of mitotic S. cerevisiae7 at 2
kb resolution. Three main features were extracted from the yeast contact data
(Supplementary Fig. 1): the probability of contact as a function of the genomic
distance (P(s)), the positions of borders detected by HicSeg v1.152 and positions of
loops detected manually on chromosome 5. Positions from loops and borders were
then aggregated into pileups of 17 × 17 pixels. We generated 2000 simulated
matrices of 289 × 289 pixels. A first probability map of the same dimension is
generated by making a diagonal gradient from P(s) representing the polymer
behaviour. For each of the 2000 generated matrices, two additional probability
maps are generated. The first by placing several occurrences of the border pileup on
the diagonal, where the distance between borders follows a normal distribution
fitted on the experimental coordinates. The second probability map is generated by
adding the loop kernel 2–100 pixels away from the diagonal with the constraint
that it must be aligned vertically and horizontally with border coordinates. For each
generated matrix, the product of the P(s), borders and loops probability maps is
then computed and used as a probability law to sample contact positions while
keeping the same number of reads as the experimental map. This simulation
method is implemented in the script chromo_simul.py, which can be found on the
github repository: https://github.com/koszullab/chromosight_analyses_scripts.

Generate-config

Detection

Whole genome of S. cerevisiae, bin = 10 kb Whole genome of C. albicans, bin = 10 kb

Manually selected Automatically detected

N=27 Output

a b c

Fig. 5 Point and click mode. a Whole-genome contact map of S. cerevisiae8 with 15 inter-centromere patterns that were selected by hand. Darker means
more contacts. b Chromosight generates a new kernel by summing all the selected patterns and applying a Gaussian filter. c Chromosight detection of the
inter-centromeres patterns in the whole-genome contact map of C. albicans49 with the resulting pileup plot of the 27 detections.
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Benchmarking. To benchmark precision, sensitivity and F1 score, the simulated
Hi–C data set with known loop coordinates were used. Each algorithm was run
with a range of 60-180 parameter combinations (Supplementary Fig. 2) on
2000 simulated matrices and F1 score was calculated on the ensemble of results for
each parameter combination separately (Supplementary Table 1). For each soft-
ware, scores used in the final benchmark (Fig. 1) are those from the parameter
combination that yielded the highest F1 score.

For the performance benchmark, HiCCUPS and HOMER were excluded. The
former because it runs on GPU, and the latter because it uses genomic alignments
as input and is much slower. The dataset used is a published high coverage Hi–C
library36 from human lymphoblastoid cell lines (GM12878). To compare RAM
usage across programs, this dataset was subsampled at 10%, 20%, 30%, 40% and
50% contacts and the maximum scanning distance was set to 2Mbp. To compare
CPU time, all programs were run on the full dataset, at different maximum
scanning distances, with a minimum scanning distance of 0 and all other
parameters left to default. All programs were run on a single thread, on a Intel(R)
Core(TM) i7-8700K CPU at 3.70 GHz with 32 GB of available RAM.

Software versions used in the benchmark are Chromosight v0.9.0, hicexplorer
v3.3.1, cooltools v0.2.0, homer 4.10 and hiccups 1.6.2. Input data, scripts and
results of both benchmarks are available on Zenodo (https://doi.org/10.5281/
zenodo.3742095)

Preprocessing of Hi–C matrices. Chromosight accepts input Hi–C data in cool
format53. Prior to detection, Chromosight balances the whole-genome matrix using
the ICE algorithm31 to account for Hi–C associated biases. For each intrachro-
mosomal matrix, the observed/expected contact ratios are then computed by
dividing each pixel by the mean of its diagonal. This erases the diagonal gradient
due to the power-law relationship between genomic distance and contact prob-
ability, thus emphasising local variations in the signal (Fig. 1b). Intra-chromosomal
contacts above a user-defined distance are discarded to constrain the analysis to
relevant scales and improve performances.

Calculation of Pearson coefficients. Correlation coefficients are computed by
convolving the template over the contact map. Convolution algorithms are often
used in computer vision where images are typically dense. Hi–C contact maps, on
the other hand, can be very sparse. Chromosight’s convolution algorithm is
therefore designed to be fast and memory efficient on sparse matrices. It can also
exclude missing bins when computing correlation coefficients. Those bins appear
as white lines on Hi–C matrices and can be caused by repeated sequences or low
coverage regions.

The contact map can be considered an image IMGCONT where the intensity of each
pixel IMGCONT[i, j] represents the contact probability between loci i and j of the
chromosome. In that context, each pattern of interest can be considered a template
image IMGTMP with MTMP rows and NTMP columns.

The correlation operation consists in sliding the template (IMGTMP) over the
image (IMGCONT) and measuring, for each template position, the similarity
between the template and its overlap in the image. We used the Pearson
correlation coefficient as a the measure of similarity between the two images. The
output of this matching procedure is an image of correlation coefficients IMGCORR

such that

IMGCORR ½i; j� ¼ Corr IMGCONT i�MTMP

2
: iþMTMP

2
; j� NTMP

2
: jþ NTMP

2

� �
; IMGTMP

� �

ð1Þ
where the correlation operator Corr( ⋅ , ⋅ ) is defined as

Corr IMGX ; IMGYð Þ ¼ cov ðIMGX ; IMGY Þ
std ðIMGXÞ � std ðIMGY Þ
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where IMG ¼ 1

jX\Y j
P

ðm;nÞ2X\Y IMG½m; n�, X ∩ Y is the set of pixel coordinates that

are valid in image IMGX and in image IMGY, and ∣X ∩ Y∣ is the number of valid pixels
in IMGX and IMGY. A pixel in IMGCONT is defined as valid when it is outside a region
with missing bins.

Separation of high-correlation foci. Selection is done by localising specific local
maxima within IMGCORR. We proceeded as follows: first, we discard all points (i, j)
where IMGCORR[i, j] < τCORR. An adjacency graph Adxd is then generated from the d
remaining points. The value of A[i, j] is a boolean indicating the (four-way)
adjacency status between the ith and jth nonzero pixels. The scipy implementation
of the CCL algorithm for sparse graphs54 is then used on A to label the different
contiguous foci of nonzero pixels. Foci with less than two pixels are discarded. For
each focus, the pixel with the highest coefficient is determined as the pattern
coordinate.

Patterns are then filtered out if they overlap too many empty pixels or are too
close from another detected pattern. The remaining candidates in IMGCORR are

scanned by decreasing order of magnitude: every time a candidate is appended to
the list of selected local maxima, all its neighbouring candidates are discarded. The
proportion of empty pixels allowed and the minimum separation between two
patterns are also user defined parameters.

Biological analyses. Pairs of reads were aligned independently using Bowtie2
(v2.3.4.1) with --very-sensitive-local against the S. cerevisiae SC288 reference
genome (GCF000146045.2). Uncuts, loops and religation events were filtered as
described in ref. 55. Contact data were binned at 2 kb and normalised using the ICE
balancing method31. Hi–C matrices were generated from fastq files using hicstuff
v2.3.056. Detection for biological analyses of yeast and human data was performed
with default parameters using a 7 × 7 loop kernel available in Chromosight using
--pattern loops_small unless mentioned otherwise. For enrichment analysis,
cohesin peaks were defined using ChIP-seq data from57. Raw reads were aligned
with bowtie2 and only mapped positions with Mapping Quality superior to 30 were
kept and signals were also binned at 2 kb to synchronise with Hi–C data. Peaks of
cohesins were considered with ChIP/input > 1.5 and peaks closer than 10 kb to
centromeres or rDNA were removed.

Annotation of highly expressed genes was done using RNA-seq data from8.
Alignment was done as above. The distribution of the number of reads for each 2
kb bin was computed and the top 20% of the distribution were considered bins
with high transcription. For border annotation, a set of plus or minus 1 bin on the
detected positions is used. For human data, hg19 genome assembly was used with
same strategy for alignment, construction and normalisation of contact data.
ChIPseq peaks were retrieved from UCSC database (Supplementary Table 2). B.
subtilis data were aligned with the PY79 genome version and the SMC signal was
extracted using ChIP-chip data from58 and processed as described previously10,59.
Peaks were annotated with the find_peaks function from scipy (v1.4.1), with
parameters threshold= 0.1, width= 50. ChIA-PET data were processed as Hi–C
data except that the contact maps were binned at a 500bp resolution. Epstein-Barr
virus (EBV) genome, strain B95-8 (V01555.2) sequence was used to align the reads
from EBV. For the detection in the different proximity ligation protocols, we
retrieved publicly available data sets from the 4D Nucleome Data Portal41, and
applied loops detection in the resulting contact maps of the mcool files at 10 kb
resolution with the default settings by possibly changing one option that is
indicated in (Fig. 4a).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data associated with this study are publicly available and their reference numbers are
listed in Supplementary Tables 2 and 3. Intermediate results, benchmark code and data
are available on Zenodo (https://doi.org/10.5281/zenodo.3742095).

Code availability
Software and documentation available at https://github.com/koszullab/chromosight. All
scripts required to reproduce figures and analyses are available at https://github.com/
koszullab/chromosight_analyses_scripts.
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