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Changes from sexual reproduction to female-producing parthenogenesis (thelytoky) have great evolutionary and ecological con-

sequences, but how many times parthenogenesis evolved in different animal taxa is unknown. We present the first exhaustive

database covering 765 cases of parthenogenesis in haplodiploid (arrhenotokous) arthropods, and estimate frequencies of partheno-

genesis in different taxonomic groups. We show that the frequency of parthenogenetic lineages extensively varies among groups

(0–38% among genera), that many species have both sexual and parthenogenetic lineages and that polyploidy is very rare.

Parthenogens are characterized by broad ecological niches: parasitoid and phytophagous parthenogenetic species consistently use

more host species, and have larger, polewards extended geographic distributions than their sexual relatives. These differences

did not solely evolve after the transition to parthenogenesis. Extant parthenogens often derive from sexual ancestors with rel-

atively broad ecological niches and distributions. As these ecological attributes are associated with large population sizes, our

results strongly suggests that transitions to parthenogenesis are more frequent in large sexual populations and/or that the risk

of extinction of parthenogens with large population sizes is reduced. The species database presented here provides insights into

the maintenance of sex and parthenogenesis in natural populations that are not taxon specific and opens perspectives for future

comparative studies.

KEY WORDS: asexual reproduction, haplodiploidy, Hymenoptera, niche breadth, thelytoky, Thysanoptera, arrhenotoky, poly-

ploidy.

Impact Summary
The animal kingdom exhibits a great diversity in reproductive

modes. In addition to the well-known and widespread sexual

reproduction, species can reproduce asexually, via partheno-

genesis. Males are absent in parthenogenetic species or pop-

ulations. How this diversity in reproductive systems can be

maintained remains a major question in evolutionary biology.

We assembled a database of parthenogenetic arthropod

species focusing on groups with haplodiploid sex determi-

nation. Haplodiploidy is the sex determination system where

males develop from unfertilized eggs and females from fertil-

ized eggs. We use our database to identify ecological traits that

contribute to reproductive polymorphisms.

Parthenogenesis evolved many more times than previ-

ously thought. We found clear evidence for parthenogene-

sis in 765 species in many phylogenetically unrelated groups

with vastly different ecologies. The frequency of partheno-

genesis greatly varies among groups, and many species com-

prise both sexual and parthenogenetic populations. Overall,

the frequency ranges from 0–1.5% between orders, but in

species-rich genera, parthenogenesis occurs in up to as much

as 38% of the species. Polyploidy is very rare (at most 4%), and

endosymbiont-induced parthenogenesis is suggested to occur

in approximately 40% of the species. Parthenogens are char-

acterized by larger, polewards extended geographic ranges and

utilize more host species than their sexual relatives. Moreover,

ecological attributes (i.e. the number of host species and size

of geographic distribution) in sexuals favor the transition to

and/or the success of derived parthenogenetic lineages. This

species database sets the basis for further analyses on sexuals

and parthenogens that are not taxon specific.

3 0 4
C© 2017 The Author(s). Evolution Letters published by Wiley Periodicals, Inc. on behalf of Society for the Study of Evolution
(SSE) and European Society for Evolutionary Biology (ESEB).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
Evolution Letters 1-6: 304–316

 20563744, 2017, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/evl3.30 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [03/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://orcid.org/0000-0003-0613-7633
http://orcid.org/0000-0002-1126-1535
http://orcid.org/0000-0003-1945-5374
http://creativecommons.org/licenses/by/4.0/


EVOLUTION AND COMPARATIVE ECOLOGY OF PARTHENOGENESIS

Reproduced with Permission of Elzemiek Zinkstok, Significant Science Communication.

EVOLUTION LETTERS DECEMBER 2017 3 0 5

 20563744, 2017, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/evl3.30 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [03/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



VAN DER KOOI ET AL.

Changes in reproductive modes, especially from sexual re-

production to female-producing parthenogenesis (also called the-

lytoky), have great evolutionary and ecological consequences

(Bell 1982), but how many times parthenogenesis evolved in dif-

ferent animal taxa is unknown. Whereas parthenogenesis is rare

amongst vertebrates and absent in natural bird and mammal pop-

ulations, it occurs frequently in many species-rich invertebrate

groups (Bell 1982; Suomalainen et al. 1987; Normark 2003).

Using information mostly from vertebrates, White (1977) esti-

mated that approximately 0.1% of the described animal species

reproduce by means of parthenogenesis, a frequency estimate

that subsequently has been widely perpetuated (Bell 1982; Schön

et al. 2009). This estimate was, however, not based on a species

list, and vertebrates represent only a minute and nonrepresenta-

tive fraction (at most 1%; (May 2010)) of total animal diversity.

More importantly, parthenogenesis in vertebrates is often due to

tychoparthenogenesis (i.e., rare, spontaneous hatching of unfer-

tilized eggs in sexual species), rather than facultative or obligate

parthenogenesis. Given the inefficiency of tychoparthenogenesis

(very low hatching success and low viability of offspring; re-

viewed by van der Kooi and Schwander 2015), it generally plays

no role in the population dynamics of a species.

In contrast to vertebrates, the frequency of obligate partheno-

genesis in some species-rich invertebrate groups appears to be

much higher than 0.1%. Focusing on hexapods, Normark (2014)

recently pointed out that in some insect groups the overall fre-

quency can be orders of magnitudes higher. Indeed, studies that

focused on specific invertebrate groups found high frequencies of

parthenogenesis, for example it was found in 15% of Megastig-

mus (Boivin et al. 2014) and 30% of Aphytis wasp species (De-

Bach 1969; Rosen and DeBach 1979). Why different taxa vary by

several orders of magnitude in the frequency of parthenogenesis

remains unknown.

One hypothesis that could explain the extensive variation in

parthenogenesis frequency among taxa is that developmental and

genetic constraints reduce the transition from sexual reproduc-

tion to parthenogenesis in some cases (reviewed by Engelstaedter

2008). For example, the necessity of sperm to initiate embryo de-

velopment could explain the extreme rareness of parthenogenesis

in vertebrates. In many invertebrates such developmental require-

ments are absent. As an example, in species with haplodiploid

sex determination–where males develop from unfertilized eggs

and females from fertilized eggs (arrhenotoky)—egg activation

and centrosome formation is induced immediately after ovipo-

sition, independent of fertilization. However, within taxonomic

groups with identical sex determination systems the incidence of

parthenogenesis also varies (Normark 2003). This suggests that

alternative factors, possibly linked to species ecologies rather than

to genetic or developmental factors, also influence the frequency

of parthenogenesis. The lack of quantitative frequency estimates

of parthenogenetic species however prohibits testing how genetic

and ecological effects influence the transition rate to parthenogen-

esis and the persistence of parthenogenetic lineages across broad

taxonomic groups.

Here, we present the first comprehensive survey of female-

producing parthenogenesis in haplodiploid arthropods. Hap-

lodiploid sex determination has evolved at least 17 times inde-

pendently, of which 15 times in arthropods (Otto and Jarne 2001).

This allows for comparative analyses across different taxonomic

groups but within a single sex-determination system. Further-

more, approximately 12% of all animal species are haplodiploid

(Bachtrog et al. 2014), and the ecologies of several haplodiploid

taxonomic groups (notably insects) are well studied. In arthro-

pods, haplodiploidy is well known from the insect orders Hy-

menoptera (ants, bees, sawflies, and wasps) and Thysanoptera

(thrips) where all species are haplodiploid, but it also occurs in

Hemiptera (whiteflies), a few beetle species and several groups of

mites. We focus on obligate female-producing parthenogenesis,

thus excluding rare cases of facultative and cyclical partheno-

genesis, as these reproductive systems are functionally very sim-

ilar to sexual reproduction (reviewed by Neiman et al. 2014).

We do not include species characterized by paternal genome

elimination–where males develop from fertilized eggs, but sub-

sequently eliminate their paternal chromosomes, which has re-

cently been reviewed elsewhere (e.g., Ross et al. 2010). When-

ever possible, our database includes information on the causes of

parthenogenesis in a lineage, especially whether parthenogenesis

is caused by infection with maternally inherited endosymbionts

(e.g., Wolbachia). Endosymbiont infection is a common cause of

parthenogenesis in various haplodiploid groups (Stouthamer et al.

1990; Zchori-Fein et al. 2001). For each taxonomic group, we

calculate frequency estimates of parthenogenesis, endosymbiont-

induced parthenogenesis, and polyploidy, and we perform com-

parative tests on ecological characteristics of sexuals and

parthenogens.

Materials and Methods
DATA COLLECTION

The species list was compiled via a thorough search through

Google Scholar (publications until August 2016) and using previ-

ously published reviews on different topics (Table 1). We started

with the list provided by Normark (2003) that contained 163 cases

of parthenogenesis in haplodiploid taxa, which is about 20% of

our database. Other (often overlapping) studies were used to ex-

tend our database (Table 1), and various overviews provided a

starting point for searches in specific taxa (e.g., Lewis 1973;

Cook and Butcher 1999; Wenseleers and Billen 2000; Huigens

and Stouthamer 2003; Koivisto and Braig 2003). The recently
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EVOLUTION AND COMPARATIVE ECOLOGY OF PARTHENOGENESIS

Table 1. Important previous overview studies with partheno-

genetic haplodiploids.

Taxa studied Species Reference

Hemiptera,
Hymenoptera, and
Thysanoptera

163 (Normark 2003)

Hymenoptera 20 (Flanders 1945;
Slobodchikoff and Daly
1971; Gokhman 2009)

Hymenoptera 100 (Stouthamer 2003)
Hymenoptera:

Cynipoidea
50 (Askew et al. 2013)

Hymenoptera: Aphytis 30 (Rosen and DeBach 1979)
Mites 38 (Norton et al. 1993)
Thysanoptera 46 (Pomeyrol 1929)
Haplodiploid

arthropods
765 This study

Note that different species lists often overlap.

established Tree of Sex database (Bachtrog et al. 2014) also

included parthenogenetic species in various taxa, but did not list

any parthenogenetic Hymenoptera or Thysanoptera species. All

cases that were obtained from reviews were re-examined.

Reproductive modes in most studies are deduced based on

breeding experiments or population sex ratios. Species for which

reproductive modes were not assessed via breeding assays were

only included if sex ratio estimates were based on large sample

sizes, preferably from different locations; hence, we are fairly

certain that the species in our list are parthenogenetic. Species not

present in the list were assumed to be sexual. However, for the

vast majority of these, the reproductive mode has not been stud-

ied, and therefore our frequency estimates are underestimates.

When available, information on ploidy levels, reproductive poly-

morphisms, life-history traits as well as the origin and cytological

basis of parthenogenesis was included in the database.

Frequencies of parthenogenesis are compared for different

taxonomic levels (genera, families, superfamilies, and orders).

Total species numbers for each taxonomic level were taken from

large-scale overview studies on Hymenoptera in general (Aguiar

et al. 2013), Symphyta (Taeger et al. 2010; Taeger and Blank

2011), Chalcidoidea (Noyes 2016), and Thysanoptera (Mound

2013; ThripsWiki 2016).

COMPARATIVE ANALYSES

For our comparative analyses of sexuals and parthenogens, we

focused on the mega-diverse Hymenoptera superfamily Chalci-

doidea, taking advantage of the many transitions to parthenogen-

esis within this group (233 parthenogenetic species) as well as

the availability of detailed ecological and taxonomic data in the

Universal Chalcidoidea Database (Noyes 2016). Species with re-

productive polymorphisms were excluded from these analyses,

as separate information for sexual and parthenogenetic lineages

within such species was generally not available.

We compared body size, number of host species [a proxy

of a species’ niche breadth (Jaenike 1990)] and geographic dis-

tribution. Whenever possible given the available data, we com-

pared sexuals and parthenogens via two ways: first, parthenogens

were compared with their sexual sister-species as deduced from

recently published phylogenies (Table 2). In this comparative

approach we included 44 parthenogens and 74 sexuals, be-

longing to eight genera in the families Aphelinidae, Torymi-

dae, and Trichogrammatidae. These species were repartitioned

into 32 sexual-parthenogenetic pairs; for clades with multiple

species, the mean value was used in the analyses. Second, in-

formation on number of host species and geographic distribu-

tion was automatically extracted from the Universal Chalcidoidea

Database (Noyes 2016) using a custom Python script using Beau-

tifulSoup4 (https://www.crummy.com/software/BeautifulSoup/).

This approach allowed us to compare data from sexual and related

parthenogens within 52 genera (comprising 134 parthenogens and

8194 sexual species. For the comparisons with species pairs, body

size was obtained from taxonomic keys and scientific books or ar-

ticles as sources. The size was measured in millimeters, as a single

value or as a range, and excludes ovipositor length (see Supple-

mentary Material for further details). Information on the number

of host species used was mostly obtained from Noyes (2016),

except for 13 species for which more recent data was available.

For the per genus analyses, we compared the number

of host species and geographic distribution, which were ob-

tained from Noyes (2016). To obtain accurate geographic dis-

tribution data in this approach, we replaced redundant location

names by currently used names (e.g., Russia instead of USSR)

and the large countries Australia, Brazil, Canada, China, In-

dia, Russia, and the USA were divided into states or regions.

To transform country names to geographical information, we

took the geographical center for a country (using OpenStreetMap

Contributors, https://www.openstreetmap.org), using the Python

package Geocoder (https://github.com/DenisCarriere/geocoder).

The extreme latitude values were extracted using a custom

python script (available at: https://github.com/cmdoret/chalcid_

comparative_analysis).

Frequency of Parthenogenesis
PARTHENOGENESIS EVOLVED IN MANY DIFFERENT

TAXONOMIC GROUPS

Cases of parthenogenesis can be found in all well-studied hap-

lodiploid taxa (Table 3). In total, we found evidence for obligate

EVOLUTION LETTERS DECEMBER 2017 3 0 7
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VAN DER KOOI ET AL.

Table 2. Comparative analyses on morphological and ecological traits.

Approach Families Genera Pairs Sexual Parthenogen Variables

Species pairs 3 8 32 74 44 Body size, host species, geographic distribution
Per genus 11 52 52 8194 134 Host species, geographic distribution

Table 3. Frequency of parthenogenesis in haplodiploid taxa.

Orders Common name Parthenogens Total species Proportion Species total reference

Astigmata Mites 3 5000 0.001 (Norton et al. 1993)
Coleoptera: Micromalthidae Telephone-pole

beetle∗
1 1 1 (Normark 2003)

Coleoptera: Scolytinae Bark beetles 1 4500 0.000 (Farrell et al. 2001)
Hemiptera: Aleyrodoidae Whiteflies 4 1556 0.003 (Martin and Mound 2007)
Hemiptera: Margarodidae Scale insects 3 428 0.007 (Garcı́a Morales et al. 2016)
Hemiptera: Diaspididae Scale insects 1 2378 0.000 (Garcı́a Morales et al. 2016)
Hymenoptera Ants, bees, sawflies

and wasps
586 150,000 0.004 (Mayhew 2007)

Mesostigmata Predatory mites 43 5000 0.009 (Norton et al. 1993)
Prostigmata Mites 6 14,000 0.000 (Norton et al. 1993)
Thysanoptera Thrips 91 5938 0.015 (Mayhew 2007)
Trombidiformes Mites 26 25,821 0.001 (Zhang et al. 2011)

In mites and Scolytinae, the exact origin(s) of haplodiploidy are not known, so the higher taxonomic level was chosen.
∗
The telephone-pole beetle,

Micromalthus debilis, is the only extant species in this monotypic family, which is considered to have a haplodiploid origin, see Normark (2003).

Only taxa with at least one case of parthenogenesis described are shown.

parthenogenesis in 765 species across nine orders, 33 superfam-

ilies, 58 families, and 316 genera, which is about five times the

number of species previously reported by Normark (2003) and

many times the number of species in other reviews (Table 1).

Although information on the phylogenetic relationships among

different parthenogens is not available for most taxa, the 765

parthenogenetic species most likely correspond to at least as many

independent transitions from sexual reproduction to parthenogen-

esis. Speciation after the transition to parthenogenesis is consid-

ered to be very rare (Bell 1982), and so are reversals to sexuality

(van der Kooi and Schwander 2014b). Moreover, what is con-

sidered a single parthenogenetic species often corresponds to a

pool of parthenogens that derive from multiple, independent tran-

sitions to parthenogenesis (e.g., Janko et al. 2008; van der Kooi

and Schwander 2014a).

The analysis of parthenogenesis frequencies at different

taxonomic levels in haplodiploids indicates that different sex

determination systems are not required to generate variation in

parthenogenesis frequency among taxa. Indeed, there is exten-

sive variation in parthenogenesis frequency among haplodiploid

taxa and no phylogenetic clustering above the genus level. Over-

all, when excluding the exceptional case of the parthenogenetic

Micromalthus debilis (the sole extant species in an ancient fam-

ily), the frequency of parthenogenesis ranges from 0 to 1.5%

across taxonomic groups where haplodiploidy evolved (Table 3).

The global estimate of parthenogenesis across these groups is

approximately 0.04%. Within the two largest insect clades (Hy-

menoptera: about 140.000 described species, Thysanoptera: 5000

described species; (Mayhew 2007)) the frequency of parthenogen-

esis ranges from 0 to 33%, with a mean of 0.9% among families in

Hymenoptera and across Thysanoptera families from 0 to 3.7%,

with a mean of 0.8%. Parthenogenesis is scattered across the

whole phylogeny in hymenopterans and thrips (Figs. 1, S1–S3).

Some groups comprise particularly many parthenogenetic

species. For example, Cynipoidea (the superfamily of gall wasps)

stand out because they feature a very high frequency of partheno-

genetic species. Approximately 4% of species (n = 122) are obli-

gately parthenogenetic (Fig. 1). The high frequency of partheno-

genesis is robust, because when the cases based on circumstantial

evidence for parthenogenesis are excluded, the average frequency

of parthenogenesis in gall wasps is still 1.3% (n = 38 species),

which is markedly higher than in other superfamilies. Sexual

gall wasps have a cyclically parthenogenetic life cycle, where

a parthenogenetic cycle is generally followed by a sexual cycle

(reviewed by Stone et al. 2002). The high number of obligate

parthenogens in this system may be explained by simple loss-

of-function mutations that suppress the sexual cycle (Neiman

et al. 2014). As Cynipoidea is the only known haplodiploid

3 0 8 EVOLUTION LETTERS DECEMBER 2017
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EVOLUTION AND COMPARATIVE ECOLOGY OF PARTHENOGENESIS

Figure 1. Frequency of parthenogenesis in Hymenoptera superfamilies. The phylogeny is from Klopfstein et al. (2013); taxa with fewer

than 100 species described have gray label names. Except for the Ceraphronoidea, Evanioidea, and Siricoidea, all species-rich taxa have

parthenogenetic species.

arthropod group with cyclical parthenogenesis, formal tests to

infer whether cyclical parthenogenesis favors the transition to

obligate parthenogenesis are impossible.

Other groups stand out because of their high frequency

of parthenogenesis. When genera with very few species are

excluded, the Chalcidoidea genera Aphytis and Trichogramma

feature a high frequency of parthenogenesis. In line with ear-

lier estimates (DeBach 1969; Rosen and DeBach 1979), the

highest proportion of parthenogens was found in the para-

sitoid wasp genus Aphytis s.l. where parthenogenesis occurs

in 42 out of 110 (38%) species. In Trichogramma, 27 out of

239 species (11%) have parthenogenetic lineages. The reason

for the high incidence of parthenogenesis in Aphytis is un-

known, but for Trichogramma it is presumably due to ascer-

tainment bias; in this genus the first cases of endosymbiont-

induced parthenogenesis were described (Stouthamer et al. 1990).

This may have stimulated researchers to study reproductive

systems in this genus. Similar frequencies were found among

thrips genera (Supporting file 5). In summary, parthenogenesis

is found in all major haplodiploid groups and the frequency

greatly varies between taxonomic groups (Table 3; Figs. 1,

S1–S3).

REPRODUCTIVE POLYMORPHISMS ARE WIDESPREAD

In many plant and animal species both sexual and parthenogenetic

lineages can be found, either sympatrically or in different geo-

graphic areas (Bell 1982; Lynch 1984). Such reproductive poly-

morphisms are interesting, as they can be used to study possible

costs and benefits of sex under natural conditions. In our sur-

vey, we found that for 143 parthenogenetic haplodiploid species

(19% of the parthenogenetic species in our study) there is clear

evidence for existence of sexual lineages as well. Reproductive

polymorphisms occur frequently across many taxonomic levels

and at comparable frequencies in species with parthenogenesis

caused by genetic factors or endosymbiont infection (respec-

tively 10/27 species 37%, and 26/58 species 45%; χ2 = 0.21,

df = 1, P = 0.65). This suggests that the ecological and/or

evolutionary factors that maintain reproductive polymorphisms

seem similar for species with different causes of parthenogene-

sis. How frequently reproductive polymorphisms occur in other

(nonhaplodiploid) taxonomic groups remains unknown, as there

currently are no estimates for other taxa.

The frequency of reproductive polymorphisms is most likely

underestimated. Species that do not occur in our database are

assumed to be sexual, and parthenogenetic species for which

EVOLUTION LETTERS DECEMBER 2017 3 0 9
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VAN DER KOOI ET AL.

Figure 2. Frequency of endosymbiont-induced parthenogenesis. Yes: sexual reproduction can be restored via antibiotic treatment and/or

after exposure to heat. No: sexual reproduction cannot be restored and is not caused by endosymbionts. Unclear: only circumstantial

evidence points to endosymbionts (e.g. only PCR screening and no antibiotic treatment; see main text). Likely no: no indication of

parthenogenesis-inducing endosymbionts, but reversibility to sexuality has not been tested. Based on 143 cases.

no sexual lineages are known are considered to be partheno-

genetic. Considerable research effort (sampling of populations

across the species distribution range and breeding experiments)

is required in order to detect reproductive polymorphisms. That

increasing research effort may increase the chance of detecting

reproductive polymorphism becomes clear when the number of

citations for species with reproductive polymorphisms is com-

pared with that for obligate parthenogens. Species with reproduc-

tive polymorphisms have more than twice as many citations as

obligate parthenogens (Supplementary Material). An alternative,

nonmutually exclusive explanation is that reproductive polymor-

phic species are more studied because of their polymorphism. We

currently cannot formally test the two hypotheses; it nonetheless

is likely that many sexual lineages in putatively parthenogenetic

species as well as parthenogenetic lineages in putatively sexual

species remain undetected.

Origins of Parthenogenesis
ENDOSYMBIONT-INDUCED PARTHENOGENESIS IS

PROVEN TO OCCUR IN 42% OF SPECIES

Transitions from sex to parthenogenesis can have different

causes. Parthenogenesis can have a genetic basis, such as a hy-

bridization event between related species or a mutation in sex-

specific genes, which may result in the origin of a partheno-

genetic lineage (Normark 2003). Transitions to parthenogene-

sis can also be caused by infection with maternally inherited

endosymbionts (Stouthamer et al. 1990). In haplodiploids, at

least three taxa include parthenogenesis-inducing endosymbionts

(PI-endosymbionts): Wolbachia, Cardinium, and Rickettsia (e.g.,

Stouthamer et al. 1993; Zchori-Fein et al. 2001; Hagimori et al.

2006). Presence of PI-endosymbionts can be tested by removing

endosymbionts from parthenogenetic females, either by exposing

them to high temperatures during early development (Flanders

1945) or by treating them with antibiotics (Stouthamer et al. 1990).

This “cures” parthenogenetic females from their endosymbionts,

and causes them to produce sons.

The frequency of endosymbiont-induced parthenogenesis

in haplodiploids is surprisingly high. Out of 139 species for

which we obtained information on the causes of the transition to

parthenogenesis, for 105 species it was suggested that partheno-

genesis was caused by endosymbionts. However, in only 58 cases

(42% of the investigated species) this was convincingly shown

(Fig. 2). Clear cases of endosymbiont-induced parthenogene-

sis are currently known in three insect orders (Hemiptera, Hy-

menoptera, and Thysanoptera) and in Bryobia mites (Table S3)

(Weeks and Breeuwer 2001).

Three factors may generate an overestimate of the frequency

of endosymbiont-induced parthenogenesis. First, publication bias

will skew the frequency of endosymbiont-induced parthenogene-

sis toward positive results, as studies showing PI-endosymbionts

to be present are much more likely to be published than studies

that show that PI-endosymbionts are absent in a species [“neg-

ative results”; see (Monti et al. 2016) for a notable exception].

Second, infection with Wolbachia is often interpreted as evi-

dence for an endosymbiont inducing parthenogenesis in a lin-

eage (e.g., Weeks and Breeuwer 2001; Huigens and Stouthamer

2003; Boivin et al. 2014). These interpretations should be consid-

ered with caution, however, because Wolbachia-infection is very
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widespread, including in many sexual species (Zug and Ham-

merstein 2012). Third, when parthenogenesis-inducing endosym-

bionts have been found in a species, they are often assumed to

occur in related parthenogenetic species, which is not necessarily

true. Mechanisms underlying parthenogenesis can greatly differ

between highly related species, as shown in Trichogramma (Vavre

et al. 2004) and Encarsia parasitoids wasps (Gokhman 2009) as

well as Aptinothrips grass thrips (van der Kooi and Schwander

2014a), where parthenogenesis is caused by endosymbionts in

some species, but via another mechanism in others. In conclusion,

in 42% of the investigated haplodiploid species parthenogenesis

is due to endosymbionts, but the actual frequency presumably is

much lower.

In many cases the endosymbiont species causing partheno-

genesis remains unknown. Cardinium and Rickettsia have been

shown to cause parthenogenesis in Chalcidoidea (Hymenoptera)

only. Strong correlations with Rickettsia and parthenogenesis

are found in three Eulophidae species, and Cardinium is sug-

gested to cause parthenogenesis in several species of Aphelinidae

and Encyrtidae. In the majority of systems Wolbachia is consid-

ered to be the causal endosymbiont, but this view is most likely

biased because the other endosymbiont species were described

more than a decade later. Consequently, numerous studies

screened parthenogens for presence of Wolbachia, but did not

screen for the other PI-endosymbionts Cardinium and Ricket-

sia. This lack of complete screens, together with the fact that

some parthenogenetic lineages are known to harbor more than

one endosymbiont species (e.g., in Aphytis parasitoid wasps with

PI-endosymbionts, both Cardinium and Wolbachia are found

(Zchori-Fein and Perlman 2004)), highlight that we should be

cautious in ascribing parthenogenesis to a specific endosymbiont

species.

POLYPLOIDY IS EXCEEDINGLY RARE

In vertebrates and plants, polyploidy occurs more frequently

in parthenogens than sexuals (Suomalainen et al. 1987; Otto

and Whitton 2000); as a consequence, polyploidy is some-

times considered the norm in parthenogens (e.g., Kearney

et al. 2009). At least in haplodiploids this is not the case. Of

the 50 parthenogenetic species with available karyotype infor-

mation, only two (4%) are polyploid (Fig. S4), namely the

gall wasp Diplolepis eglanteriae and the sawfly Pachyprota-

sis youngiae (both triploids) (Sanderson 1988; Naito and In-

omata 2006). The frequency of polyploids drops even further

when species with parthenogenesis-inducing endosymbionts are

included. Parthenogenesis-inducing endosymbionts are unlikely

to occur in polyploids, because endosymbiont-induced partheno-

genesis generally involves meiotic parthenogenesis with sec-

ondary restoration of diploidy. Including the 48 species with

parthenogenesis-inducing endosymbionts (but for which no kary-

otypes are known), the frequency of polyploid parthenogens drops

to 2%. Objective frequency estimates of polyploidy in sexuals

are lacking for any haplodiploid group, though it is thought to

be rare in hymenopterans (Gokhman 2009). Nonetheless, given

there are many parthenogens in haplodiploid groups, and very few

of these are polyploid, polyploidy is certainly more rare among

parthenogens than commonly thought.

Ecological Differences between
Sexuals and Parthenogens
Several hypotheses predict that sexual and parthenogenetic

species differ in ecological generalism and the size of distri-

bution ranges, with opposite predictions depending on the hy-

pothesis (Vrijenhoek 1979; Bell 1982; Lynch 1984). For exam-

ple, parthenogens might have broader ecological niches, because

there may be lineage-level selection for general-purpose geno-

types in parthenogens (Lynch 1984). Alternatively, parthenogens

might have narrower niches, because when a parthenogen derives

from a sexual ancestor it inherits a single genotype from a ge-

netically heterogeneous sexual group (the “frozen niche variation

hypothesis,” sensu Vrijenhoek 1979; see also Bell 1982).

We compared the number of host species and distribution

ranges for obligate sexual and obligate parthenogenetic wasps

in parasitoid and phytophagous wasps in the mega-diverse Hy-

menoptera superfamily Chalcidoidea. Chalcidoidea was chosen

because of the many independent transitions to parthenogenesis

in this group (n = 233; Fig. 1) and because their ecology and

geographic distribution are well-documented (see Noyes 2016).

We consider the number of host species as a proxy of a species’

niche width, that is, generalists will have more hosts than special-

ists (Jaenike 1990). Sexuals and parthenogens were compared in

two different datasets. First using sexual-parthenogenetic sister-

species pairs as inferred from phylogenetic trees (32 sexual-

parthenogen species pairs) and second via a coarser approach

where data from all parthenogens and sexuals was compared per

genus (8328 species in 52 genera). The data subsets used for

comparisons of specific ecological traits depended on the avail-

ability of ecological and phylogenetic information (Materials and

Methods, Supplementary Information).

Parthenogens consistently parasitize more host species,

indicating they have wider ecological niches than sexuals.

A significant 2–3.5-fold increase in number of host species

used was found via both the species-pair and per genus ap-

proach (Fig. 3), and these results were robust with respect to

publication bias (i.e., more hosts known for more intensively

studies species; see Supplementary Information). Broad niches

in parthenogens can stem from two mechanisms: few successful

genotypes that have a broad ecological niche (i.e., “general pur-

pose genotypes”) or a large mixture of genetically different clones
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Figure 3. Number of host species for sexual and parthenogenetic Chalcidoidea parasitoid and phytophagous wasps. Left panels: pairwise

analysis, right panels: analysis incorporating all data from the database; note the different y-axis ranges. For visualization purposes, one

pair with a parthenogen with extremely many host species is not shown in the upper panels.

each with a distinct and narrow ecological niche (Bell 1982;

Lynch 1984). To disentangle these hypotheses, detailed studies

on the genetic vs. niche diversity of parthenogenetic lineages are

required.

Animals with a wider ecological niche are more likely to ex-

pand their geographic range (Normark and Johnson 2011). In line

with this theory, we found that parthenogens occur in larger geo-

graphic regions than their related sexual species. Parthenogens are

consistently found in 1.7–5 times more countries than their sexual

relatives (Fig. 3). Distribution ranges of sexuals and parthenogens

largely overlap in regions close to the equator, but parthenogens

have extended their distributions polewards by 10 latitudinal

degrees (i.e., about 1000 kilometers) compared to their sexual

relatives (Fig. S5). These effects are robust with respect to publi-

cation bias (more occurrences known for more intensively studied

species; see Supplementary Material).

The observed ecological and geographical differences

between sexuals and parthenogens can stem from two
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EVOLUTION AND COMPARATIVE ECOLOGY OF PARTHENOGENESIS

Figure 4. Parthenogens have a wider niche and polewards extended distribution as compared to sexuals, and parthenogenesis is more

likely to evolve in sexuals with relatively wide niches and distribution ranges. Width of the arrow indicates the number of transitions,

leaves represent the ecological niche width and dark shading represents geographical range.

nonmutually exclusive mechanisms. First, selection for a broad

ecological niche and large geographical range can follow after

the transition to parthenogenesis. Second, it is possible that transi-

tions to parthenogenesis are more likely to occur in sexual species

with broad niches or geographic distributions than in sexuals with

narrow niches and distributions. To distinguish between these

two scenarios, we compared the ecology and distribution ranges

for two groups of sexuals: sexuals that are the sister-species

for a parthenogenetic species or clade, that is, the sexuals that

likely share a common ancestor with the parthenogen, were com-

pared with sexuals for which no related parthenogenetic species is

known (the outgroup). We found that sexual species that share an

ancestor with parthenogenetic species have more host species and

occur in larger geographic areas than sexuals from clades where

no parthenogenetic species are known (Fig. S6). This means that

the increased niche width and enlarged geographic distribution

(partly) arose before the transition to parthenogenesis and that

(successful) parthenogenetic species arise more frequently from

sexuals with wide ecological niches and geographic distributions,

than from sexuals with narrow ecologies and geographic distribu-

tions (Fig. 4).

General Discussion
Many isolated studies examined the frequency, mechanism,

ploidy, and/or ecology of parthenogenesis in one or a few species

(e.g., DeBach 1969; Vrijenhoek et al. 1989; Stouthamer et al.

1990; Boivin et al. 2014; van der Kooi and Schwander 2014a;

Monti et al. 2016), but large-scale, quantitative studies that pro-

vide insights into general patterns of parthenogens are lacking. We

here present the first broad comparison on the ecology and evo-

lution of parthenogenesis that is based on a species database that

is as exhaustive as possible given the available data. Focusing on

haplodiploid arthropods, we found parthenogenesis in more than

750 species across all major haplodiploid groups (ranging from 0

to 1.5% between orders; Table 3). In many phylogenetically dif-

ferent groups parthenogenesis occurs much more frequently than

previously thought; as an example, in species-rich Hymenoptera

and Thysanoptera genera the frequency of parthenogenesis ranges

from 0 to 38%. The absence of phylogenetic clustering above

the genus level as well as the observation that parthenogenetic

species are found in 2–3% of the genera (Supplementary Infor-

mation) are very similar to frequency estimates of (facultative)

asexual seed production in plants, which was found to occur in

about 2.2% of phylogenetically distinct plant genera (Hojsgaard

et al. 2014). However, the relative frequency of facultative versus

obligate parthenogenesis in plants remains unknown. Our results

are of great importance to our overall understanding of reproduc-

tive system evolution, as haplodiploidy is the sex determination

system of many animal taxa (Bachtrog et al. 2014), including Hy-

menoptera, which is one of the most species-rich insect groups

(Mayhew 2007).
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The number of obligate parthenogens in our database and

the frequency estimates calculated here are certainly underes-

timates, as many cases of parthenogenesis remain undetected.

For instance, in poorly studied species, female-biased sex ra-

tios will often remain unnoticed. More importantly, we as-

sumed that species that do not occur in our list are by de-

fault sexual, while the reproductive mode of these species has

not been directly investigated. Many species contain both sex-

ual and parthenogenetic lineages (see section on reproductive

polymorphisms), which may easily co-occur within populations.

Unless studied in detail via breeding assays, such mixed popula-

tions will generally be considered sexual, because they comprise

males.

It is unlikely that the parthenogenesis frequency we re-

port here is specific for haplodiploids, although addressing this

question requires development of detailed species lists for other

groups. In organisms with other sex-determination systems, de-

velopmental processes, such as egg activation and centrosome

formation, are supposed to impose constraints on the transition

to parthenogenesis (Engelstaedter 2008). In haplodiploids, where

males always develop parthenogenetically, several of these devel-

opmental constraints are overcome. For example, in haplodiploids

egg activation and centrosome formation is induced immediately

after oviposition–independent of fertilization. Hence, a transi-

tion to parthenogenesis may involve a relatively small change–-

and thus occur frequently–in haplodiploids (Engelstaedter 2008).

Nevertheless, the extensive variation in the frequency of partheno-

genesis among haplodiploids (Figs. 1, S1–S3) clearly shows that

different sex determination systems are not necessary to explain

the variation in the frequency of parthenogenesis among major

taxa.

The incidence of polyploidy and endosymbiont-induced

parthenogenesis is much lower than commonly thought. We

find that polyploidy is extremely rare in parthenogenetic

haplodiploids. This shows that—at least in haplodiploids—

polyploidy is not a common consequence of parthenogenesis.

Parthenogenesis-inducing endosymbionts are found in 42% of

the cases, but this is almost certainly an overestimate due to

publication bias. Convincing evidence supporting endosymbiont-

induced parthenogenesis is reported for several taxonomic groups,

albeit in the vast majority of cases the causal endosymbiont

remains unknown. There is a clear need for more studies

that provide balanced evidence supporting or rejecting en-

dosymbionts as causal agents for parthenogenesis (e.g., van

der Kooi and Schwander 2014a; Monti et al. 2016), as well

as detailed studies that characterize the endosymbiont species

in systems where endosymbiont-induced parthenogenesis is

suggested.

An in-depth comparative analysis of parasitoid and phy-

tophagous wasps showed that parthenogens have more host

species and wider geographical distributions than sexuals

(Figs. 3, 4). These differences mimic the large distribution ranges

and/or poleward expansions in self-fertilizing (Grossenbacher

et al. 2015) and asexual plants (Johnson et al. 2010). The ex-

tended distribution of parthenogenetic lineages toward the poles

could stem from enhanced colonization abilities in these lin-

eages, for example because parthenogenesis confers reproduc-

tive assurance [“Baker’s law”; (reviewed by Pannell et al. 2015)]

and/or because parthenogens have an advantage over sexual rela-

tives in colder climates. For example, cold climates can generate

colonization-extinction cycles (i.e., strong reductions in popula-

tion size during extreme winters), which can lead to mate limi-

tation and inbreeding in sexuals (Haag and Ebert 2004). Given

that mate limitation and inbreeding will never be a problem for

parthenogenetic females, parthenogenetic lineages may be more

successful in (re)colonizing habitats after extreme winters. Eco-

logical niche width and geographic distribution range are likely

to be interrelated, but the relative importance of either remains

currently unknown.

The wider ecological niches and geographical ranges found

in parthenogens only partially evolved after the transition to asex-

uality. Sexual sister-species–that have a shared ancestor with the

parthenogenetic lineage–exhibit relatively large ecological niches

and distribution ranges, as compared to sexuals for which no re-

lated parthenogenetic species is known (Figs. 4, S6). A similar

pattern was suggested to occur in (diploid) parthenogenetic scale

insects (Ross et al. 2013), and emphasizes that large population

sizes of sexuals are paramount in the origin and/or evolutionary

success of derived parthenogenetic lineages. Large population

sizes should favor the evolution of parthenogenesis because more

mutants capable of parthenogenesis are expected in species with

larger population size. Parthenogens with large population and

range sizes are also less prone to extinction than those with small

populations (e.g., Otto and Barton 2001). We also found weak ev-

idence that parthenogenesis emerges more frequently in species

with small body sizes, which generally also have larger popula-

tions (Supplementary Information).

Finally, the development of this database opens perspectives

on future comparative studies on the evolution of sex. Of particular

interest would be to develop parthenogenetic species lists for

groups with other sex determination systems.

AUTHOR CONTRIBUTIONS

C.J.v.d.K. and T.S. designed the study; C.J.v.d.K. developed

the species database with input from all authors; C.M.D. de-

veloped the tool to automatically obtain data from the Univer-

sal Chalcidoidea Database; C.J.v.d.K. and C.M.D. performed the

comparative analyses; C.J.v.d.K. and T.S. wrote the manuscript

with input from all authors.

3 1 4 EVOLUTION LETTERS DECEMBER 2017

 20563744, 2017, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/evl3.30 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [03/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



EVOLUTION AND COMPARATIVE ECOLOGY OF PARTHENOGENESIS

ACKNOWLEDGMENTS
We thank three reviewers for useful comments on an early version of the
manuscript, and W. Reen for figure editing. Drs. J. Noyes and A. Po-
laszek are acknowledged for construction and maintaining the Universal
Chalcidoidea Database, and useful comments.

DATA ARCHIVING
The species databases (with obligate parthenogens, tychoparthenogens
and facultative parthenogens) are available from Dryad Digital Reposi-
tory: http://doi.org/10.5061/dryad.1sm54. Data used for summary statis-
tics and comparative analyses are available as supplementary material
and at https://github.com/cmdoret/chalcid_comparative_analysis.

LITERATURE CITED
Aguiar, A. P., A. R. Deans, M. S. Engel, M. Forshage, J. T. Huber, J. T.

Jennings, N. F. Johnson, A. S. Lelej, J. T. Longino, and V. Lohrmann.
2013. Order hymenoptera. Animal biodiversity: An outline of higher-
level classification and survey of taxonomic richness (addenda 2013).
Zootaxa 3703:51–62.

Askew, R. R., G. Melika, J. Pujade-Villar, K. Schoenrogge, G. N. Stone, and
J. L. Nieves-Aldrey. 2013. Catalogue of parasitoids and inquilines in
cynipid oak galls in the West Palaearctic. Zootaxa 3643:001–133.

Bachtrog, D., J. E. Mank, C. L. Peichel, M. Kirkpatrick, S. P. Otto, T.-L.
Ashman, M. W. Hahn, J. Kitano, I. Mayrose, R. Ming, et al. 2014. Sex
determination: why so many ways of doing it? PLoS Biol. 12:e1001899.

Bell, G. 1982. The masterpiece of nature: The evolution and genetics of
sexuality. California Univ. Press, Berkeley, CA.

Boivin, T., H. Henri, F. Vavre, C. Gidoin, P. Veber, J. N. Candau, E. Magnoux,
A. Roques, and M. A. Auger-Rozenberg. 2014. Epidemiology of asex-
uality induced by the endosymbiotic Wolbachia across phytophagous
wasp species: host plant specialization matters. Mol. Ecol. 23:2362–
2375.

Cook, J. M., and R. D. Butcher. 1999. The transmission and effects of Wol-

bachia bacteria in parasitoids. Res. Popul. Ecol. 41:15–28.
DeBach, P. 1969. Uniparental, sibling and semi-species in relation to taxon-

omy and biological control. Israelian J. Entomol. 4:11–28.
Engelstaedter, J. 2008. Constraints on the evolution of asexual reproduction.

BioEssays 30:1138–1150.
Farrell, B. D., A. S. Sequeira, B. C. O’Meara, B. B. Normark, J. H. Chung,

and B. H. Jordal. 2001. The evolution of agriculture in beetles (Cur-
culionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027.

Flanders, S. E. 1945. The bisexuality of uniparental Hymenoptera, a function
of the environment. Am. Nat. 79:122–141.

Garcı́a Morales, M., B. Denno, D. Miller, G. Miller, Y. Ben-Dov, and N.
Hardy. 2016. ScaleNet: a literature-based model of scale insect biology
and systematics. Database accessable via http://scalenet.info.

Gokhman, V. E. 2009. Karyotypes of parasitic Hymenoptera. Springer Science
& Business Media, The Netherlands.

Grossenbacher, D., R. Briscoe Runquist, E. E. Goldberg, and Y. Brandvain.
2015. Geographic range size is predicted by plant mating system. Ecol.
Lett. 18:706–713.

Haag, C. R., and D. Ebert. 2004. A new hypothesis to explain geographic
parthenogenesis. Annales Zoologici Fennici 41:539–544.

Hagimori, T., Y. Abe, S. Date, and K. Miura. 2006. The first finding of a
Rickettsia bacterium associated with parthenogenesis induction among
insects. Curr. Microbiol. 52:97–101.

Hojsgaard, D., S. Klatt, R. Baier, J. G. Carman, and E. Hörandl. 2014. Tax-
onomy and biogeography of apomixis in angiosperms and associated
biodiversity characteristics. Crit. Rev. Plant Sci. 33:414–427.

Huigens, M. E., R. Stouthamer. 2003. Parthenogenesis associated with Wol-
bachia. Pp. 247–266 in K. Bourtzis, and T. A. Miller, eds. Insect sym-
biosis. CRC Press, Boca Raton.

Jaenike, J. 1990. Host specialization in phytophagous insects. Ann. Rev. Ecol.
Syst. 21:243–273.

Janko, K., P. Drozd, J. Flegr, and J. R. Pannell. 2008. Clonal
turnover versus clonal decay: a null model for observed patterns
of asexual longevity, diversity and distribution. Evolution 62:1264–
1270.

Johnson, M. T. J., S. D. Smith, and M. D. Rausher. 2010. Effects of plant
sex on range distributions and allocation to reproduction. New Phytol.
186:769–779.

Kearney, M., M. Fujita, J. Ridenour, I. Schön, K. Martens, and P. van Dijk.
2009. Lost sex in the reptiles: constraints and correlations. In I. Schön,
P. van Dijk, and K. Martens, eds. Lost sex: The evolutionary biology of
parthenogenesis, Springer, Netherlands.

Klopfstein, S., L. Vilhelmsen, J. M. Heraty, M. Sharkey, and F. Ronquist. 2013.
The hymenopteran tree of life: evidence from protein-coding genes and
objectively aligned ribosomal data. PloS One 8:e69344.

Koivisto, R. K., and H. R. Braig. 2003. Microorganisms and parthenogenesis.
Biol. J. Linnean Soc. 79:43–58.

Lewis, T. 1973. Thrips, their biology, ecology and economic importance.
Academic Press, London.

Lynch, M. 1984. Destabilizing hybridization, general-purpose geno-
types and geographic parthenogenesis. Quart. Rev. Biol. 59:257–
290.

Martin, J., and L. Mound. 2007. An annotated check list of the world’s white-
flies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1:1–84.

May, R. M. 2010. Tropical arthropod species, more or less? Science 329:41–
42.

Mayhew, P. J. 2007. Why are there so many insect species? Perspectives from
fossils and phylogenies. Biol. Rev. 82:425–454.

Monti, M. M., F. Nugnes, L. Gualtieri, M. Gebiola, and U. Bernardo. 2016. No
evidence of parthenogenesis-inducing bacteria involved in Thripoctenus

javae thelytoky: an unusual finding in Chalcidoidea. Entomol. Exp.
Appl. 160:292–301.

Mound, L. A. 2013. Order thysanoptera haliday, 1836. Animal biodiversity:
An outline of higher-level classification and survey of taxonomic rich-
ness (Addenda 2013). Zootaxa 3703:49–50.

Naito, T., and R. Inomata. 2006. A new triploid thelytokous species of the
genus Pachyprotasis Hartig, 1837 (Hymenoptera: Tenthredinidae) from
Japan and Korea. Pp. 279–283 in S. Blank, S. Schmidt, and A. Taeger,
eds. Recent sawfly research: Synthesis and prospects. Goecke & Evers,
Keltern.

Neiman, M., T. F. Sharbel, and T. Schwander. 2014. Genetic causes of tran-
sitions from sexual reproduction to asexuality in plants and animals. J.
Evol. Biol. 27:1346–1359.

Normark, B. B. 2003. The evolution of alternative genetic systems in insects.
Ann. Rev. Entomol. 48:397–423.

———. 2014. Modes of reproduction. Oxford Univ. Press, Oxford.
Normark, B. B., and N. A. Johnson. 2011. Niche explosion. Genetica 139:551–

564.
Norton, R. A., J. B. Kethley, D. E. Johnston, B. M. O’Connor, D. Wrensch,

and M. Ebbert. 1993. Phylogenetic perspectives on genetic systems and
reproductive modes of mites. Pp.8–99 in D. Wrensch, M. Ebbert, eds.
Evolution and diversity of sex ratio in insects and mites. Chapmann &
Hall Publishers, New York.

Noyes, J. S. 2016. Universal Chalcidoidea Database. World Wide Web elec-
tronic publication. http://www.nhm.ac.uk/chalcidoids.

Otto, S. P., and N. H. Barton. 2001. Selection for recombination in small
populations. Evolution 55:1921–1931.

EVOLUTION LETTERS DECEMBER 2017 3 1 5

 20563744, 2017, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/evl3.30 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [03/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://doi.org/10.5061/dryad.1sm54
https://github.com/cmdoret/chalcid_comparative_analysis
http://scalenet.info
http://www.nhm.ac.uk/chalcidoids


VAN DER KOOI ET AL.

Otto, S. P., and P. Jarne. 2001. Haploids–Hapless or happening? Science
292:2441–2443.

Otto, S. P., and J. Whitton. 2000. Polyploid incidence and evolution. Ann.
Rev. Genet. 34:401–437.

Pannell, J. R., J. R. Auld, Y. Brandvain, M. Burd, J. W. Busch, P. O. Cheptou,
J. K. Conner, E. E. Goldberg, A. G. Grant, and D. L. Grossenbacher.
2015. The scope of Baker’s law. New Phytol. 208:656–667.

Pomeyrol, R. 1929. La parthenogenese des thysanopteres. Bull. Biol. France
Belgium 62:3–12.

Rosen, D., and P. DeBach. 1979. Species of aphytis of the world: Hy-
menoptera: aphelinidae. Springer Science & Business Media, Dr W.
Junk Publishers, The Hague.

Ross, L., N. B. Hardy, A. Okusu, and B. B. Normark. 2013. Large population
size predicts the distribution of asexuality in scale insects. Evolution
67:196–206.

Ross, L., I. Pen, and D. M. Shuker. 2010. Genomic conflict in scale insects: the
causes and consequences of bizarre genetic systems. Biol. Rev. 85:807–
828.

Sanderson, A. R. 1988. Cytological investigations of parthenogenesis in gall
wasps (Cynipidae, Hymenoptera). Genetica 77:189–216.

Schön, I., K. Martens, and P. Van Dijk. 2009. Lost sex: The evolutionary biol-
ogy of parthenogenesis. Springer Science & Business Media, Springer,
Netherlands.

Slobodchikoff, C., and H. V. Daly. 1971. Systematic and evolutionary impli-
cations of parthenogenesis in the Hymenoptera. Am. Zool. 11:273–282.

Stone, G. N., K. Schönrogge, R. J. Atkinson, D. Bellido, and J. Pujade-
Villar. 2002. The population biology of oak gall wasps (Hymenoptera:
Cynipidae). Ann. Rev. Entomol. 47:633–668.

Stouthamer, R. 2003. The use of unisexual wasps in biological control. Pp.
93–113 in Quality control and production of biological control agents
theory and testing procedures. CABI Publishing, Wallingford.

Stouthamer, R., J. Breeuwer, R. Luck, and J. Werren. 1993. Molecular iden-
tification of microorganisms associated with parthenogenesis. Nature
361:66–68.

Stouthamer, R., R. F. Luck, and W. Hamilton. 1990. Antibiotics cause
parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to
revert to sex. Proc. Natl. Acad. Sci. 87:2424–2427.

Suomalainen, E., A. Saura, and J. Lokki. 1987. Cytology and evolution in
parthenogenesis. CRC Press, Boka Raton.

Taeger, A., and S. Blank. 2011. ECatSym—Electronic World Catalog
of Symphyta (Insecta, Hymenoptera). Program version 3.10, data

version 38. Digital Entomological Information, http://www.sdei.de/
ecatsym/index.html. Müncheberg.

Taeger, A., S. M. Blank, and A. D. Liston. 2010. World catalog of symphyta
(Hymenoptera). Zootaxa 2580:1–1064.

ThripsWiki. 2016. ThripsWiki—providing information on the World’s thrips.
http://thrips.info/wiki.

van der Kooi, C. J., and T. Schwander. 2014a. Evolution of asexuality via
different mechanisms in grass thrips (Thysanoptera: Aptinothrips). Evo-
lution 68:1883–1893.

van der Kooi, C. J., and T. Schwander. 2014b. On the fate of sexual traits
under asexuality. Biol. Rev. 89:805–819.

van der Kooi, C. J., and T. Schwander. 2015. Parthenogenesis: birth of a new
lineage or reproductive accident? Curr. Biol. 25:R659–R661.

Vavre, F., J. De Jong, R. Stouthamer. 2004. Cytogenetic mechanism and
genetic consequences of thelytoky in the wasp Trichogramma cacoeciae.
Heredity 93:592–596.

Vrijenhoek, R. C. 1979. Factors affecting clonal diversity and coexistence.
Am. Zool. 19:787–797.

Vrijenhoek, R. C., R. M. Dawley, C. J. Cole, and J. P. Bogart. 1989. A list
of the known unisequcal vertebrates. In R. M. Dawley, and J. P. Bogart,
eds. Evolution and cytology of unisexual vertebrates. The University of
the State of New York, New York.

Weeks, A., and J. Breeuwer. 2001. Wolbachia–induced parthenogenesis in a
genus of phytophagous mites. Proc. R Soc. Lond. B 268:2245–2251.

Wenseleers, T., and J. Billen. 2000. No evidence for Wolbachia-induced
parthenogenesis in the social Hymenoptera. J. Evol. Biol. 13:277–280.

White, M. J. D. 1977. Animal cytology and evolution: CUP Archive.
Zchori-Fein, E., Y. Gottlieb, S. Kelly, J. Brown, J. Wilson, T. Karr, and M.

Hunter. 2001. A newly discovered bacterium associated with partheno-
genesis and a change in host selection behavior in parasitoid wasps.
Proc. Natl. Acad. Sci. 98:12555–12560.

Zchori-Fein, E., and S. J. Perlman. 2004. Distribution of the bacterial symbiont
Cardinium in arthropods. Mol. Ecol. 13:2009–2016.

Zhang, Z., Q. Fan, V. Pesic, H. Smit, A. Bochkov, A. Khaustov, A. Baker,
A. Wohltmann, T. Wen, and J. Amrine. 2011. Order Trombidiformes
Reuter, 1909. Zootaxa 3148:129–138.

Zug, R., and P. Hammerstein. 2012. Still a host of hosts for Wolbachia:
analysis of recent data suggests that 40% of terrestrial arthropod species
are infected. PloS One 7:e38544.

Associate Editor: K. Lythgoe

Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher’s website:

Figure S1. Frequency of parthenogenesis in Chalcidoidea. Phylogeny from Heraty, et al. (1). Total number of species per family was taken from
Noyes (2).
Figure S2. Frequency of parthenogenesis in Symphyta. Phylogeny from Klopfstein, et al. (3) and the total number of species was taken from Taeger and
Blank (4). 14 families with fewer than 80 species documented in total were excluded (these all had 0 parthenogens).
Figure S3. Frequency of parthenogenesis in Thysanoptera. Phylogeny after Buckman, et al. (5) and species totals were taken from
Mound (6).
Figure S4. Polyploidy in parthenogenetic haplodiploids. Based on studies with chromosome counts 4% (2 in 50) are polyploid. When species with
endosymbiont-induced parthenogenesis (that very likely are diploids, see text) are included, only 2% (2 in 98) is polyploid.
Figure S5. Distribution ranges of sexuals and parthenogens (in absolute values). Left panels: pairwise analyses, right panels: analyses incorporating all
information from the database.
Figure S6. Ecological niche width and distribution ranges for sexual species with different relatedness to parthenogens. Sexual species closely related to
parthenogens (i.e. their sexual sister-species) have more host species and wider geographic ranges than their outgroup (i.e. sexual species within the same
genus, for which no parthenogenetic sister-species are known). Dashed lines refer to related parthenogenetic species; p-values refer to the sister species
versus outgroup comparison. For the complete comparison between parthenogens and their sexual sister species, see Figure 4 (left panels) of the main text.
Figure S7. Body sizes of sexual and parthenogenetic Chalcidoidea.
Table S1. Genera with clear evidence of endosymbiont-induced parthenogenesis in one or more species.
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